${\tt HIGH-PRESSURE~SYNTHESIS~AND~CHARACTERIZATION~OF~EUROPIUM(II)~METASILICATE,~EuSiO}_3$

Ken-ichi MACHIDA, Gin-ya ADACHI,* Jiro SHIOKAWA, Masahiko SHIMADA,
Mitsue KOIZUMI, Kaichi SUITO, tand Akifumi ONODERA
Department of Applied Chemistry, Faculty of Engineering,
Osaka University, Yamadaoka, Suita, Osaka 565

Institute of Scientific and Industrial Research,
Osaka University, Yamadaoka, Suita, Osaka 565

Department of Material Physics, Faculty of Engineering Science,
Osaka University, Toyonaka, Osaka 560

The high-pressure polymorphism of EuSiO $_3$ was studied up to a pressure of 80 kb at 1000 - 1400°C. Two high-pressure phases were obtained in addition to the atmospheric one: α -EuSiO $_3$ was transformed into δ and δ' forms at about 60 and 70 kb, respectively. Their crystal data were determined by means of X-ray diffraction analyses.

Divalent-europium (Eu^{II}) compounds have been synthesized because they are interested in the magnetic and spectroscopic properties. In a binary system EuO - SiO₂, EuSiO₃, Eu₂SiO₄, and Eu₃SiO₅ have been obtained, and their magnetic susceptibilities¹⁾ and magneto-optical properties²⁾ have been studied at low temperature. For alkaline-earth metasilicates, CaSiO₃ and SrSiO₃, several high-pressure phases have been prepared: α - or β -CaSiO₃ (atmospheric form) transforms into the δ form at about 30 kb and 900°C, and the ϵ form at about 150 kb and 1000°C, respectively.³⁾ The strontium metasilicate, α -SrSiO₃, gives two high-pressure phases at 34-120 kb and 750-1400°C.⁴⁾ Consequently, EuSiO₃ can be expected to show the same polymorphism as CaSiO₃ or SrSiO₃ since the ionic radius of Eu²⁺ is similar to that of Ca²⁺ or Sr²⁺.

The atmospheric-pressure phase, $\alpha\text{-EuSiO}_3$, was prepared by heating a mixture of the appropriate amounts of Eu_2O_3 (99.99%), Si (99.999%) and SiO_2 (99.999%) at 1400°C for 3×2 h (two times) in Ar. The high-pressure treatments of $\alpha\text{-EuSiO}_3$ were carried out with a cubic anvil type apparatus (~60 kb) 5) and a split-sphere type apparatus

^{*}Author for correspondence.

(60 - 80 kb). The powdered sample was packed into boron nitride cups (6 mm $\phi \times 3.2$ mm for the former apparatus or 3.5 mm $\phi \times 4$ mm for the latter one) and was heated by a graphite heater. A Pt/Pt-13%Rh thermocouple was employed to measure a temperature of sample. After maintaining the desired pressure and temperature, the samples were quenched to room temperature and then the pressure was released.

The X-ray powder analysis of resulting phases was performed with the Ni-filtered Cu $K\alpha$ radiation ($\lambda = 1.5418$ Å) monochromated by a graphite plate on a Rigaku Denki Rotaflex diffractometer, which was calibrated with high purity silicon (99.999%). The accurate lattice parameters were determined by the least-square method. The magnetic susceptibilities of samples were measured with a Shimadzu MB-11 magnetic balance over a temperature range of 80 - 300 K.

Under the pressures of about 60 and 70 kb at 1000 - 1400 °C, α -EuSiO $_3$ trans- Table 1. Magnetic moments for the high-pressure polymorphs of EuSiO $_3$ formed into two high-pressure phases, which were termed in a similar manner as the calcium analogs, $\underline{\text{viz}}$. δ - and δ -EuSiO₃. The Eu²⁺ ions tend to be easily oxidized

Phase	Treati P(kb)	ment T(°C)	$\mu_{\text{eff.}}(\mu_{\text{B}})$ *			
α			7.95			
δ	60	1000	7.72			
δ'	70	1200	7.83			

into Eu³⁺ ions in an oxidizing atmosphere, * $\mu_{eff.}$ = Magnetic moment per Eu²⁺ ion.

 $\underline{e}_{\cdot}\underline{g}_{\cdot}$ air, at high temperature. The effective magnetic moments per Eu^{2+} ion for resulting products are shown in Table 1. Since the values of μ_{eff} are in good agreement with the theoretical one (7.94 $\mu_{\mbox{\footnotesize{B}}})\mbox{,}$ the ions of Eu in samples should be in a divalent state.

The X-ray powder patterns of resulting products (Tables 2 - 4) were found to be closely similar to those of strontium analogs of which the ionic radius is almost equal to that of Eu^{2+} . The single crystals of EuSiO_3 polymorphs could be hardly obtained. Therefore, the crystal data of EuSiO, polymorphs were determined on the basis of Weissenberg photographs and X-ray analyses with an automated four-circle diffractometer for the single crystals of strontium analogs. The single crystals of SrSiO3 analogs were prepared from a mixture containing KCl as a flux (SrSiO3: KCl = 10:1 for mol. wt. ratio) as follows: the samples were maintained under the appropriate pressure (α phase, 35 kb; δ phase, 40 kb; δ' phase, 55 kb) at 1300 or 1400°C for 1 h and then were cooled to 800°C at a rate of 2°C/min. Transparent crystals (\sim 0.3 mm long) were obtained, of which the crystal habits were plates for the α and δ' forms, and needles for the δ one. The crystal data of EuSiO $_3$ polymorphs are summarized in Table 5.

The crystal data of $\alpha\text{--}$ and $\delta\text{--SrSiO}_3$ have been reported as follows: α form, hexa-

Table 2. X-ray powder diffraction data for $\alpha\text{-EuSiO}_3$

hkl	d _o (Å)	d _c (Å)	1/10	hkl	d _o (Å)	d _c (Å)	1/10	hkl	d _o (Å)	d _c (Å)	1/10
002	5.08	5.07	50	004	2.540	2.533	20	134	1.7841	1.7826	20
020	3.571	3.571	85	023	2.456	2.453	5	622	1./041	1,7818	20
311	3.3/1	3.571	85	222	2.399	2.403	10	224	1.7819	1.7807	20
203	3.536	3.533	15	422	2.299	2.304	25	425	1.7770	1.7760	15
310	3.370	3.371	25	313	2.070	2.073	40	406	1.7615	1.7665	5
021	3.3/0	3.368	25	024	2.068	2.066	45	332	1.7615	1.7627	5
312	3.353	3.352	15	223	2.000	2.065	45	006	1.6875	1.6884	15
202	3.242	3.250	15	421	2.064	2.063	50	620	1.6852	1.6856	15
Ī13	3.223	3.229	70	331	2.061	2.060	35	042	1.6835	1.6837	20
220	3.026	3.031	10	132	2.058	2.060	25	624	1.6761	1.6761	5
311	2.926	2.927	85	600	1 6100	1.9120	4.0	533	1.6671	1.6685	20
022	2.915	2.918	100	331	1.9109	1.9118	40	516	1.6428	1.6429	15
313	2.897	2.902	20	333	1.9056	1.9048	30	333	1.6016	1.6022	15
400	2.877	2.868	15	040	1.7871	1.7852	35	710	1.5979	1.5974	15
222	2.868	2.857	35					335	1.5926	1.5941	5

Table 3. X-ray powder diffraction data for $\delta\text{-EuSio}_3$

hkl	d _o (Å)	d _c (Å)	1/10	hkl	do(Å)	d _c (Å)	1/10	hkl	d _o (Å)	d _c (Å)	1/10
110 111	5.18	5.20 5.20	30	$\frac{120}{121}$	2.705	2.708 2.706	45	124 123	2.050	2.052 2.050	15
$012 \\ 012$	3.753	3.768 3.761	15	022 201	2.698	2.699 2.695	40	$\frac{222}{224}$	2.023	2.023 2.023	15
$\frac{111}{112}$	3.485	3.481	70	<u>0</u> 22	2.093	2.694	50	032	2.008	2.005	10
	3,477	3.471	70	203	2.686	2.688	30	032	2.002	2.002	10
020 201	3.346 3.328	3.347 3.336	15 15	$\frac{211}{210}$	2.615	2.687 2.620	15	$\frac{130}{131}$ $\frac{31}{312}$	1.9646	1.9660 1.9648	20
121 120	3.276	3.278 3.277	25	2 <u>1</u> 0 2 <u>1</u> 2 220		2.616 2.601		$\frac{31}{312}$	1.9586	1.9619	20
102 103	3.215	3.201 3.194	25	222 113	2.602	2.600	15	133 132	1.9388	1.9392	20
021	3.146	3.194	70	Ī14	2.348	2.347 2.346	15	221	1.9296	1.9242	20
0 <u>2</u> 1 200	3.138 3.127	3.139 3.135	90 80	$\frac{221}{223}$	2.327	2.331 2.331	10	2 <u>3</u> 3 231	1.9108	1.9108	10
202	3.121	3.130	65	004	2.274	2.277	15	123	1.8855	1.8886	25
$\frac{2\overline{1}0}{212}$	3.116	3.124 3.121	45	$\overline{131}$ $\overline{130}$	2.271	2.272 2.271	30	$\frac{024}{124}$	1.8841	1.8842	25
003	3.039	3.035	100	311 312	2.266	2.265	20	203	1.8815	1.8827	30
$\frac{112}{113}$	3.023	3.025 3.024	80	$\frac{312}{212}$	2.248	2.264 2.243	15	$\frac{2}{2}05$	1.8800 1.8756	1.8782 1.8770	20 20
112 013	2.768	2.767 2.767	20	$\frac{301}{302}$	2.213	2.209 2.207	25	313 114	1.8735 1.8288	1.8746 1.8284	15 15
<u>0</u> 13	2.755	2.762	15	031	2.167	2.168	15	115	1.8253	1.8242	20
<u>Ī</u> Ī3	2.750	2.759	10	221	2.127	2.120	25	324	1.8209	1.8195	15
221	2.715	2.714	25	$\frac{3}{3}21$	2.087	2.088 2.087	15				

Table 4. X-ray powder diffraction data for δ' -EuSiO $_3$

hkl	d _o (Å)	d _c (Å)	1/10	hkl	d _o (Å)	d _c (Å)	1/10	hkl	d _O (Å)	d _c (Å)	1/10
<u>0</u> 12	4.29	4.27	25	211	2.601	2.600	25	024	2.133	2.136	5
Ī13	3.576	3.587	20	302	2.477	2.473	5	123		2.095	_
013	3.350	3.345	35	202	2.462	2.466	5	221	2.094	2.089	30
200	3.321	3.316	40	023	2.418	2.420	10	216	2.093	2.087	20
2 12	3.174	3.164	40	304	2.369	2.371	15	Ī16	2.082	2.084	15
<u>1</u> 12	3.157	3.155	50	104	2.363	2.361	15	310	2.078	2.077	10
211	3.139	3.130	40	222	2.348	2.349	20	Ī25	2.011	2.013	25
020	3.020	3.037	35	221	2.338	2.335	25	213	2.007	2.003	20
004	3.002	3.005	100	312		2,290		031	1,9962	1.9965	20
213	2.993	2.994	70	212	2.288	2.284	15	225	1.9724	1.9696	15
114	2.959	2.952	30	223	2.275	2.277	10	115	1.8875	1.8891	25
021	2.949	2.945	55	220	2.243	2.240	10	025	1.8831	1.8849	25
210	2.912	2.910	35	206	2.227	2.222	15	404	1.8500	1.8533	25
120	2.769	2.761	15	106	2.221	2.219	10	204	1.8483	1.8460	20
122	2.705	2.713	15	300	2.206	2.210	10	217	1.8340	1.8358	30
214	2.696	2.701	20	114	2.196	2.201	5	325	1.7845	1.7842	25
113	2.619	2.612	20	224	2.140	2.140	10	323	2.,043	1.,042	23

Table 5. Crystal data for the polymorphs of $EuSiO_3$

Phase	Symmetry	S.G.	Lattice .	z	Densit	Density(g/cm ³)	
			parameters(A)		Dm	Dx	
α	Monoclinic	C ₂ ³ -C2(5)	a = 12.337(6) b = 7.141(3) c = 10.894(6) β = 111.58(4)°	12	5.12	5.09	
δ	Triclinic	C _i -Pī(2)	$\begin{array}{lll} a = & 6.877(3) \\ b = & 6.898(3) \\ c = & 9.727(5) \\ \alpha = & 85.01(4) \\ \beta = & 110.58(4) \\ \gamma = & 104.00(4) \\ \end{array}$	6	5.36	5.42	
δ'	Monoclinic	C _{2h} -P21/c (14)	a = 7.455(6) b = 6.074(4) c = 13.513(10) 8 = 117.19(6)°	8	5.48	5.57	

gonal, a = 7.127(1) and c = 10.115(1) Å; δ form, orthorhombic, a = 8.492(6), b = 10.913(7), and c = 36.25(2) Å, 4 but these data are not in agreement with our results. The atmospheric phase, α -EuSiO $_{3}$, crystallizes in the monoclinic system of the space group C_{2}^{3} -C2 (systematic absence: h + k = 2n + 1 for hkl) with a cell volume: 892.5(6) Å and Z = 12. Two high-pressure forms, δ - and δ' -EuSiO $_{3}$, belong to the triclinic and monoclinic symmetries of C_{1}^{1} -PĪ and C_{2n}^{5} -P21/c (systematic absences: δ form, no conditions; δ' form, 1 = 2n + 1 for h01 and k = 2n + 1 for 0k0). Their cell volumes are 419.2(3) and 544.3(6) Å and the values of Z are δ and δ , respectively. The determination of space groups, C_{2}^{3} -C2 and C_{1}^{1} -PĪ, was made on the basis of the Patterson maps for the X-ray intensity data of α - and δ -SrSiO $_{3}$. Two forms, α - and δ -EuSiO $_{3}$ (SrSiO $_{3}$) are approximately isostructural with α - and δ -CaSiO $_{3}$. However the δ' form is a high-pressure polymorph observed only on EuSiO $_{3}$ or SrSiO $_{3}$.

The density of CaSiO_3 considerably increases when it transforms into the ϵ form $(\operatorname{Dx:}\ 2.90\ \operatorname{g/cm}^3,\ \alpha-\operatorname{CaSiO}_3^{7})$; $3.06\ \operatorname{g/cm}^3,\ \delta-\operatorname{CaSiO}_3^{8})$; $4.56\ \operatorname{g/cm}^3,\ \epsilon-\operatorname{CaSiO}_3^{3})$ because the silicate units change from SiO_4 tetrahedra to SiO_6 octahedra. The phases, $\alpha-$ and $\delta-\operatorname{CaSiO}_3$, contain the $(\operatorname{Si}_3\operatorname{O}_9)^{6-}$ ring of three SiO_4 tetrahedra $^{7,8)}$ while $\epsilon-\operatorname{CaSiO}_3$ (perovskite type) consists of a $(\operatorname{SiO}_3)_\infty$ network of SiO_6 octahedra. However, the density of EuSiO_3 is not appreciably changed with the phase transformation. This seems to suggest that $\delta'-\operatorname{EuSiO}_3$ (SrSiO₃) consists of silicate anions of SiO_4 tetrahedra in a similar manner as the α and δ forms.

References

- 1) M. W. Shafer, J. Appl. Phys., 36, 1145 (1965).
- 2) J. C. Suits, B. E. Argyle, and M. J. Freiser, ibid., 37, 1391 (1966).
- 3) A. E. Ringwood and A. Major, Earth Planet. Sci. Lett., 2, 106 (1967); L. Liu and A. E. Ringwood, <u>ibid.</u>, <u>28</u>, 209 (1975).
- 4) Y. Shimizu, Y. Syono, and S. Akimoto, High Temp.-High Pressures, 2, 113 (1970).
- 5) M. Shimada, N. Ogawa, M. Koizumi, F. Dachille, and R. Roy, Am. Ceram. Soc. Bull., 58, 519 (1979).
- 6) N. Kawai, M. Togaya, and A. Onodera, Proc. Jpn. Acad., <u>49</u>, 623 (1973); K. Suito and N. Kawai, High-Pressure Sci. Technol., <u>2</u>, 53 (1979).
- 7) J. W. Jeffery and L. Heller, Acta Crystallogr., 6, 807 (1953).
- 8) F. J. Trojer, Z. Kristallogr., 130, 185 (1969).